aws sagemaker create-model-explainability-job-definition

Creates the definition for a model explainability job

Options

NameDescription
--job-definition-name <string>The name of the model explainability job definition. The name must be unique within an AWS Region in the AWS account
--model-explainability-baseline-config <structure>The baseline configuration for a model explainability job
--model-explainability-app-specification <structure>Configures the model explainability job to run a specified Docker container image
--model-explainability-job-input <structure>Inputs for the model explainability job
--model-explainability-job-output-config <structure>The output configuration for monitoring jobs
--job-resources <structure>Identifies the resources to deploy for a monitoring job
--network-config <structure>Networking options for a model explainability job
--role-arn <string>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf
--stopping-condition <structure>A time limit for how long the monitoring job is allowed to run before stopping
--tags <list>(Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management User Guide
--cli-input-json <string>Performs service operation based on the JSON string provided. The JSON string follows the format provided by ``--generate-cli-skeleton``. If other arguments are provided on the command line, the CLI values will override the JSON-provided values. It is not possible to pass arbitrary binary values using a JSON-provided value as the string will be taken literally
--generate-cli-skeleton <string>Prints a JSON skeleton to standard output without sending an API request. If provided with no value or the value ``input``, prints a sample input JSON that can be used as an argument for ``--cli-input-json``. If provided with the value ``output``, it validates the command inputs and returns a sample output JSON for that command